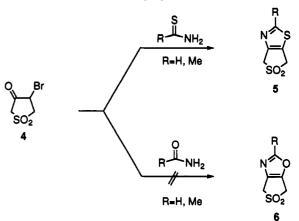

Preparation of (Phenyloxazolo)-3-sulfolene. A Precursor for (Phenyloxazolo)-o-quinodimethane

Ta-shue Chou,* Hong-Chuan Chen, and Chung-Ying Tsai

Institute of Chemistry, Academia Sinica, Taipei, Taiwan, and Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC

Received October 28, 1993 (Revised Manuscript Received December 13, 1993)


There has been growing interest in the study of heteroaromatic o-quinodimethanes 1.1 Among the several known methods for their preparation, the method involving extrusion of SO₂ from heteroaromatic-fused 3-sulfolenes 2 is the best for synthetic purposes. There are several advantages to this approach: (a) removal of SO_2 from 3-sulfolenes requires moderate temperatures, normally between 100–180 °C,² (b) derivatives of 3-sulfolenes are easily prepared by direct deprotonation/substitution processes.³ and (c) heteroaromatic-fused 3-sulfolenes of similar structure can be synthesized from a common intermediate. By means of this strategy, we have prepared thieno- and pyrrolo-3-sulfolenes from a 1,4-dicarbonyl compound;⁴ pyrazolo- and isoxazolo-3-sulfolenes from a 1,3-dicarbonyl compound;⁵ and thieno-, pyrrolo-, and furano-3-sulfolenes from 4-bromo-3-chloro-2-sulfolene.⁶ In this paper, we wish to report the synthesis and reactions of oxazolo-3-sulfolenes.

Oxazolo-o-quinodimethane 3 has been generated by flash vacuum pyrolysis at 700 °C from 5-[[(p-chlorobenzoyl)oxy]methyl]-4-methyloxazole.7 Highly reactive species 3 has been trapped as the SO_2 or PhSH adduct in low yield. In addition, the reaction of 3 with methyl acrylate gave the corresponding Diels-Alder adduct, but the yield was not reported.

We recently prepared thiazolo-3-sulfolenes 5 (Scheme 1)⁸ in one step from 4-bromo-3-sulfolanone 4, which should also be an intermediate for the synthesis of oxazolo-3sulfolenes. To our disappointment, treatment of compound 4 with formamide or acetamide under various conditions failed to yield the desired oxazolo-3-sulfolene 6.

We then turned to epoxide 7,⁹ from which bromo ketone 4 could be prepared, as the starting material (Scheme 2). Amino alcohol 8 was prepared by the reaction of 7 with NH₄OH by means of a known procedure.⁹ Attempted selective N-acylation of 8 with 1 equiv of benzoyl chloride gave a mixture of desired product 10a and N,O-diacylated product 9a; the mixture required tedious separation. Therefore, compound 8 was first completely diacylated. and then the ester moiety of 9a was selectively hydrolyzed with $NaHCO_3$ in MeOH. The resulting hydroxy amide 10a was not isolated but directly oxidized with Jones' reagent to ketone 11a. Several other amidosulfolanones, 11b-d, were prepared by the same reaction sequence. In the case of 9e, selective hydrolysis was not achieved with methanolic NaHCO₃.

Treatment of 11 with acetic anhydride, sulfuric acid, thionyl chloride, phosphorus pentoxide, or polyphosphoric acid gave complex mixtures that did not contain the desired oxazolo-3-sulfolenes. When compound 11a was heated with PCl₅ in refluxing CHCl₃, unexpected product 12a was obtained in good yield. Dichlorides 12b,c were obtained under the same conditions from 11b,c (Scheme 3). The unexpected result was not totally disappointing because, knowing that many bis(halomethyl) heteroaromatics have been converted to the corresponding oquinodimethanes,¹⁰ we expected dichlorides 12 to serve as precursors to 13. When compound 12a was treated with NaI in DMF in the presence of N-phenylmaleimide or dimethyl fumarate, Diels-Alder cycloadducts 14 (22%) and 15 (10%) were obtained, indicating that oxazolo-o-

© 1994 American Chemical Society

⁽¹⁾ For a recent review, see: Chou, T. S. Rev. Heteroatom. Chem. 1993, 8, 65.

 ⁽²⁾ Mock, W. L. J. Am. Chem. Soc. 1975, 97, 3666.
 (3) For recent reviews, see: (a) Chou, T. S.; Tso, H. H. Org. Prep. Proc. Int. 1989, 21, 257. (b) Chou, T. S.; Chou, S. S. P. J. Chin. Chem. Soc. 1992, 39, 625

⁽⁴⁾ Chou, T. S.; Chang, R. C. J. Chem. Soc., Chem. Commun. 1992, 549.

<sup>549.
(5) (</sup>a) Chou, T. S.; Chang, R. C. Tetrahedron Lett. 1992, 33, 8121. (b) Chou, T. S.; Chang, R. C. J. Org. Chem. 1993, 58, 493. (c) Chou, T. S.; Chang, R. C. Heterocycles 1993, 36, 2839.
(6) (a) Chou, T. S.; Tsai, C. Y. J. Chem. Soc., Chem. Commun. 1991, 1287. (b) Chou, T. S.; Tsai, C. Y. Heterocycles 1992, 34, 663. (c) Chou, T. S.; Tsai, C. Y. J. Chin. Chem. Soc., in press.
(7) Chuyhan P. M. S.; Chang, A. Lapling, C. Starp, P. C.; Walland, C. S. (c) Chou, S. (c) Chuyhan P. M. S.; Chang, C. Starp, P. C.; Walland, C. Starp, P. M. S.; Chang, C. Starp, P. C.; Walland, C. Starp, P. S.; Starp, C. Starp, P. C.; Walland, C. Starp, P. C.; Walland, C. Starp, P. S.; Starp, C. Starp, P. S.; Starp, C. Starp, P. C.; Walland, C. Starp, P. S.; Starp, S. S.; Starp

⁽⁷⁾ Chauhan, P. M. S.; Crew, A. P. A.; Jenkins, G.; Storr, R. C.; Walker, S. M.; Yelland, M. Tetrahedron Lett. 1990, 31, 1487.

⁽⁸⁾ Chou, T. S.; Tsai, C. Y. Tetrahedron Lett. 1992, 33, 4201.

⁽⁹⁾ Sorenson, W. R. J. Org. Chem. 1959, 24, 1796.

^{(10) (}a) Kametani, T.; Ichikawa, Y.; Suzuki, T.; Fukumoto, K. Heterocycles 1974, 2, 171. (b) Saraja, B.; Srinivasan, P. C. Tetrahedron Lett. 1984, 25, 5429. (c) Vice, S. F.; de Carvalho, H. N.; Taylor, N. G.; Dmitrienko, G. I. Tetrahedron Lett. 1989, 30, 7289. (d) Haber, M.; Pindur, U. Tetrahedron 1991, 47, 1925. (e) Pindur, U.; Haber, M. Heterocycles 1991, 32, 1463. (f) Chadwick, D. J.; Plant, A. Tetrahedron Lett. 1987, 28, 6085. (g) Dyker, G.; Kreher, R. P. Chem. Ber. 1988, 121, 1203. (h) Mitkidou, S.; Stephanidou-Stephanatou, J. Tetrahedron Lett. 1990, 31, 5197. (i) Mitkidou, S.; Stephanidou-Stephanatou, J. Tetrahedron Lett. 1991, 32, 4603. (j) Mertzanos, G. E.; Stephanidou-Stephanatou, J.; Tsoleridis, C. A.; Alexandron, N. E. Tetrahedron Lett. 1992, 33, 4499. (k) Mitkidou, S.; Stephanidou-Stephanatou, J. Tetrahedron 1992, 48, 6059. (1) Heffner, R. J.; Joullié, M. M. Synth. Commun. 1991, 21, 1055. (m) Takeshita, M.; Koike, M.; Mataka, S.; Tashiro, M. J. Org. Chem. 1991, 56,6948. (n) Munzel, M.; Kesper, K.; Schweig, A.; Specht, H. Tetrahedron Lett. 1988, 29, 6239.

^{(11) 2,2,5,5-}Tetrasubstituted 3-sulfolenes normally lose SO₂ with great difficulty under thermal conditions. See: (a) Chou, T. S.; Chang, L. T.; Tso, H. H. J. Chem. Soc., Perkin Trans. 1 1986, 1039. (b) Chou, T. S.; Chang, S. Y. J. Chem. Soc., Perkin Trans. 1 1992, 1459.

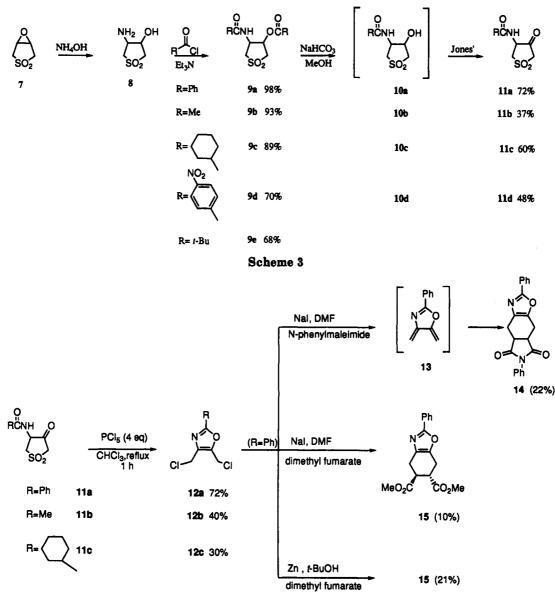
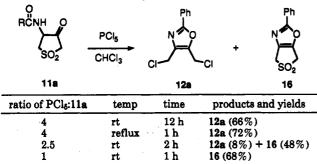
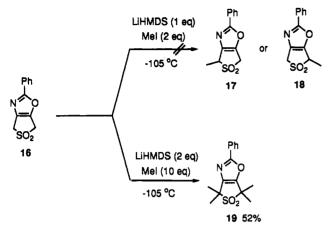



Table 1. Reaction of 4-Benzamido-3-sulfolanone 11a with PCl₅ in CHCl₃



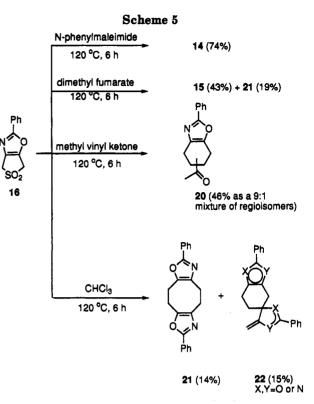
quinodimethane 13 was indeed formed as a transient intermediate. In another test, cycloadduct 15 was obtained in 21% yield when 12a was treated with Zn and dimethyl fumarate in *tert*-butyl alcohol. However, these yields were not attractive for synthesis.

Careful study of the reaction of 11a and PCl_5 revealed that desired 3-sulfolene 16 could be obtained as long as the molar ratio of the reactantas, the reaction time, and the reaction temperature were properly controlled (Table 1). Long reaction time and high temperature brought about the formation of dichlorides 12a. Apparently, desired 3-sulfolene 16 was formed initially (1 h at room temperature) and was gradually converted to 12a as the reaction continued. The results suggest that under the reaction conditions 3-sulfolene 16 loses SO₂ and undergoes further reaction with PCl₅ to give 12a. Several experiments indicate that o-quinodimethane 13 was the intermediate. An NMR sample of pure 16 in CDCl₃ kept at room temperature for 6 h was found to be essentially converted to head-to-head [4 + 4] dimer 21 of o-quinodimethane 13. In addition, stirring a mixture of 16 and dimethyl fumarate in CHCl₃ at room temperature for 1 day gave Diels-Alder cycloadduct 15 in 38% yield.

The loss of SO₂ from 16 also took place when K_2CO_3 pretreated CHCl₃ was used and when the reaction was carried out in the dark. Therefore, the possibility that the SO₂ extrusion was initiated by light or a trace of acid can be excluded. Compound 16 also decomposed easily in THF but produced only polymeric materials. In the presence of dimethyl fumarate, [4 + 2] cycloadduct 15 was formed in low yield (18%). The ease of SO₂ extrusion at room temperature is unique to 16; much higher temperatures are required for other known heteroaromatic-

Scheme 4

fused 3-sulfolenes to lose SO_2 . We do not have a good explanation for this observation yet. Nevertheless, it should be noted that compound 16 could be stored at -20 °C in solution or in pure form for more than 3 months without any appreciable decomposition.


When 16 was treated with an excess of lithium hexamethyldisilazide (LiHMDS) and MeI at -105 °C,³ tetramethylated product 19 was obtained in 52% yield (Scheme 4). Compound 19 is much more thermally stable than 16; it does not decompose in refluxing CHCl₃.¹¹ Reaction of 16 with 1 equiv of LiHMDS and MeI gave a complex mixture containing a small amount of recovered starting material but none of monomethylated product 17 or 18. Since either 17 or 18 should be an intermediate leading to tetramethylated product 19, we suspect that the monomethylated compound is not stable enough to observe.

Although it gradually decomposes at room temperature, compound 16 serves as a good precursor for o-quinodimethane 13. When 16 was treated with a dienophile in a sealed tube at 120 °C, the Diels-Alder cycloadduct was obtained (Scheme 5). Thermolysis of 16 in the absence of a dienophile afforded head-to-head [4 + 4] dimer 21 in 14% yield. In addition, [4 + 2] dimer 22 was collected in 15% yield, but the structure was not determined. Neither the head-to-tail [4 + 4] dimer nor any of the other three possible [4 + 2] dimers were observed. In conclusion, the success of the SO₂ extrusion of 16 and the subsequent Diels-Alder reactions with dienophiles once again illustrate the broad applicability of heteroaromatic-fused 3-sulfolenes as precursors for heteroaromatic o-quinodimethanes.

Experimental Section

Preparation of 11a-d from 8 via 9a-d. To a suspension of amino alcohol 8 (2.14 g, 14.2 mmol) in CH_2Cl_2 (120 mL) at 0 °C under N₂ was added an acyl chloride (28.3 mmol) dropwise. After the mixture was stirred at 0 °C for 30 min, Et₃N (56.6 mmol) was added; the resulting mixture was warmed to rt gradually, and the stirring was continued for 12 h. The mixture was concentrated under reduced pressure. The crude solid was washed with H₂O (20 mL × 2), Et₂O (40 mL × 2), and MeOH (10 mL) to give essentially pure 9a-e. Although purification at this stage was not necessary for the preparation of compounds 11, analytical samples of 9a,c,e were obtained for confirmation of structures.

3-Benzamido-4-(benzoyloxy)tetrahydrothiophene 1,1-**Dioxide (9a):** white solid; mp 234-235 °C; ¹H NMR (200 MHz, CDCl₈) δ 8.09-8.02 (m, 2H), 7.74-7.69 (m, 2H), 7.66-7.60 (m, 1H), 7.60-7.49 (m, 5H), 6.83 (d, J = 7.0 Hz, 1H), 5.94-5.88 (m, 1H), 5.36-5.22 (m, 1H), 3.82 (dd, J = 13.0, 7.3 Hz, 1H), 3.66 (dd,

J = 14.7, 5.1 Hz, 1H), 3.55 (dd, J = 14.7, 2.9 Hz, 1H), 3.37 (dd, J = 13.0, 9.9 Hz, 1H); IR (KBr) 3370, 1724, 1638, 1290, 1118 cm⁻¹; MS (EI) m/z 295 (M⁺ – 64), 173, 147, 105 (100), 77. Anal. Calcd for C₁₈H₁₇NO₅S: C, 60.16; H, 4.77; N, 3.90. Found: C, 60.15; H, 4.49; N, 3.57.

3-(Cyclohexylcarbamido)-4-[(cyclohexylcarbonyl)oxy]tetrahydrothiophene 1,1-Dioxide (9c). Two isomers were isolated. The less-polar isomer: white solid; mp 181.5-182 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.23 (d, J = 7.8 Hz, 1H), 5.42–5.34 (m, 1H), 4.81-4.71 (m, 1H), 3.67-3.52 (m, 2H), 3.21-3.05 (m, 2H), 2.45-2.28 (m, 1H), 2.19-2.02 (m, 1H), 2.00-1.62 (m, 10H), 1.58-1.13 (m, 10H); IR (KBr) 3274, 2931, 1728, 1634, 1316, 1125 cm⁻¹; MS (EI) m/z 371 (M⁺), 264, 196, 153, 125, 83 (100). Anal. Calcd for C₁₈H₂₉NO₅S: C, 58.20; H, 7.87; N, 3.77. Found: C, 58.29; H, 7.96; N, 3.65. The more-polar isomer: white solid; mp 212-213 °C; ¹H NMR (200 MHz, $CDCl_3$) δ 5.89 (d, J = 8.1 Hz, 1H), 5.48– 5.43 (m, 1H), 3.58 (dd, J = 12.8, 7.4 Hz, 1H), 3.47 (dd, J = 14.7, 5.3 Hz, 1H), 3.35 (dd, J = 14.7, 2.5 Hz, 1H), 3.13 (dd, J = 12.8, 10.2 Hz, 1H), 2.48-2.32 (m, 1H), 2.18-2.01 (m, 1H), 2.00-1.58 (m, 10H), 1.58-1.15 (m, 10H); IR (KBr) 3370, 2928, 1720, 1644, 1304, 1122 cm⁻¹; MS (EI) m/z 371 (M⁺), 196, 188, 153, 125, 111, 83 (100). Anal. Calcd for C₁₈H₂₉NO₅S: C, 58.20; H, 7.87; N, 3.77. Found: C, 58.16; H, 8.12; N, 3.69.

3-(2,2-Dimethylpropionamido)-4-[(2,2-dimethylpropionyl)oxy]tetrahydrothiophene 1,1-Dioxide (9e). Two isomers were isolated. The less-polar isomer: white solid; mp 203-204 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.48 (d, J = 7.0 Hz, 1H), 5.44– 5.36 (m, 1H), 4.79-4.68 (m, 1H), 3.70-3.53 (m, 2H), 3.22-3.07 (m, 2H), 1.22 (s, 9H), 1.19 (s, 9H); IR (KBr) 3355, 2968, 1724, 1636, 1319, 1129 cm⁻¹; MS (EI) m/z 320 (M + 1), 319 (M⁺), 276, 170 (100), 127. Anal. Calcd for C14H25NO5S: C, 52.64; H, 7.89; N, 4.38. Found: C, 52.64; H, 8.15; N, 4.29. The more-polar isomer: white solid; mp 204.5-205.5 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.11 (d, J = 7.5 Hz, 1H), 5.48-5.43 (m, 1H), 5.04-4.89 (m, 1H), $3.65 \,(\mathrm{dd}, J = 12.8, 7.5 \,\mathrm{Hz}, 1\mathrm{H}), 3.48 \,(\mathrm{dd}, J = 14.7, 5.0 \,\mathrm{Hz}, 1\mathrm{H}),$ 3.35 (dd, J = 14.7, 2.4 Hz, 1H), 3.10 (dd, J = 12.8, 10.5 Hz, 1H),1.27 (s, 9H), 1.19 (s, 9H); IR (KBr) 3416, 2961, 1710, 1651, 1284, 1124 cm⁻¹; MS (EI) m/z 320 (M + 1), 212, 170, 127 (100), 85. Anal. Calcd for C14H25NO5S: C, 52.64; H, 7.89; N, 4.38. Found: C, 52.42; H, 8.06; N, 4.20.

A solution of 9a-d (8.8 mmol) and NaHCO₃ (8.8 mmol) in MeOH (500 mL) was stirred at rt for 12 h. The mixture was cooled to 0 °C, and then HCl (37%, 1 mL) was added. The solvent was evaporated under reduced pressure, and acetone (550 mL) was added to crude intermediate 10. Jones' reagent (prepared from CrO₃, 58.6 mmol; concd H_2SO_4 , 4.85 mL; H_2O , 8.79 g) was then added dropwise at 10–15 °C over a period of 4 h, and the mixture was stirred for another 2 h. 2-Propanol (7 mL) was then added dropwise at 0 °C, and the resulting mixture was warmed to rt and stirred for 12 h. The solid was removed by filtration, and the filtrate was concentrated under reduced pressure. Ethyl acetate (500 mL) was added, and the solution was dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, EtOAc/hexane (9:1)] to give 11. The yields of the products are listed in Scheme 2.

3-Benzamido-4-oxotetrahydrothiophene 1,1-Dioxide (11a): white solid; mp 184.5–185 °C; ¹H NMR (200 MHz, acetone d_6) δ 8.75 (s, 1H), 7.96–7.88 (m, 2H), 7.64–7.43 (m, 3H), 4.96–4.80 (m, 1H), 4.39–3.90 (m, 4H); IR (KBr) 3433, 1757, 1649, 1316, 1117 cm⁻¹; MS (EI) m/z 189 (M⁺ – 64), 105 (100), 77. Anal. Calcd for C₁₁H₁₁NO₄S: C, 52.16; H, 4.38; N, 5.53. Found: C, 52.13; H, 4.55; N, 5.33.

3-Acetamido-4-oxotetrahydrothiophene 1,1-Dioxide (11b): white solid; mp 167–168 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.31 (br s, 1 H), 4.69–4.45 (m, 1H), 4.10 (d, J = 17.0 Hz, 1H), 3.90–3.68 (m, 3H), 2.07 (s, 3H); IR (KBr) 3261, 1757, 1634, 1311, 1122 cm⁻¹; MS (EI) m/z 133 (M⁺ – 58), 119, 97, 83, 69 (100). Anal. Calcd for C₉H₉NO₄S: C, 37.69; H, 4.74; N, 7.33. Found: C, 37.75; H, 4.80; N, 7.26.

3-(Cyclohexanecarboxamido)-4-oxotetrahydrothiophene 1,1-Dioxide (11c): white solid; mp 167–168.5 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.31 (d, J = 5.7 Hz, 1H), 4.54–4.40 (m, 1H), 4.14 (d, J = 17.6 Hz, 1H), 3.88–3.72 (m, 3H), 2.25–2.08 (m, 1H), 1.93–1.61 (m, 5H), 1.51–1.15 (m, 5H); IR (KBr) 3308, 2930, 1753, 1629, 1319, 1125 cm⁻¹; MS (EI) m/z 197 (M⁺ – 62), 128, 83 (100), 72. Anal. Calcd for C₁₁H₁₇NO₄S: C, 50.95; H, 6.61; N, 5.40. Found: C, 50.91; H, 6.68; N, 5.24.

3-(*p*-Nitrobenzamido)-4-oxotetrahydrothiophene 1,1-Dioxide (11d): white solid; mp 198-200 °C; ¹H NMR (200 MHz, acetone- d_{θ}) δ 9.05 (br s, 1H), 8.38-8.30 (m, 2H), 8.18-8.11 (m, 2H), 5.08-4.92 (m, 1H), 4.28-3.85 (m, 4H); IR (KBr) 3435, 1759, 1654, 1319, 1125 cm⁻¹; MS (EI) *m/z* 234 (M⁺ - 62), 150 (100), 120, 104; HRMS calcd for C₁₁H₁₀N₂O₆S 298.0260, found 298.0257. The ¹H NMR spectra revealed the purity of the product 11d to be better than 95%.

Preparation of 12a-c from 11a-c. A solution of compound 11 (0.31 mmol) and PCl₅ (0.77 mmol) in CHCl₃ (10 mL) was refluxed under N₂ for 1 h. The mixture was cooled to rt and ice (3 g) was added. The mixture was diluted with CH₂Cl₂ (30 mL) and washed with saturated aqueous NaHCO₃ (10 mL). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by HPLC [LiChrosorbTM column, EtOAc/hexane (1:1)] to give 12. The yields are listed in Scheme 3.

4,5-Bis(chloromethyl)-2-phenyloxazole (12a): yellowsolid; mp 100–101 °C; ¹H NMR (200 MHz, CDCl₃) δ 8.12–8.02 (m, 2H), 7.54–7.43 (m, 3H), 4.75 (s, 2H), 4.60 (s, 2H); IR (KBr) 1422, 1357, 1232, 773, 685 cm⁻¹; MS (EI) m/z 243 (M⁺ + 2), 241 (M⁺), 206, 122, 105 (100), 77; HRMS calcd for C₁₁H₉Cl₂NO 241.0061, found 241.0077. The ¹H NMR spectra revealed the purity of product 12a to be better than 95%.

4,5-Bis(chloromethyl)-2-methyloxazole (12b): yellow oil; ¹H NMR (200 MHz, CDCl₃) δ 4.62 (s, 2H), 4.49 (s, 2H), 2.48 (s, 3H); IR (neat) 1686, 1575, 1430, 1348, 1261, 1230, 1130, 808, 705 cm⁻¹; MS (EI) *m/z* 181 (M⁺ + 2), 179 (M⁺), 146, 144 (100); HRMS calcd for C₆H₇Cl₂NO 178.9905, found 178.9916. The ¹H NMR spectra revealed the purity of product 12b to be better than 95%.

4,5-Bis(chloromethyl)-2-cyclohexyloxazole (12c): colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 4.63 (s, 2H), 4.50 (s, 2H), 2.78 (tt, J = 11.3, 3.7 Hz, 1H), 2.06 (dd, J = 13.6, 2.2 Hz, 2H), 1.85–1.79 (m, 2H), 1.73–1.50 (m, 4H), 1.45–1.25 (m, 2H); IR (neat) 2934, 1566, 1440, 1348, 1261, 1132, 695 cm⁻¹; MS (EI) m/z 249 (M⁺ + 2), 212 (M⁺, 100), 179, 130, 83; HRMS calcd for C₁₁H₁₅-Cl₂NO 247.0532, found 247.0539. The ¹H NMR spectra revealed the purity of product 12c to be better than 95%.

2-Phenyl-4,6-dihydrothieno[3,4-d]oxazole 5,5-Dioxide (16). To a solution of sulfone 11a (58.2 mg, 0.23 mmol) in CHCl₃ (10 mL) at 0 °C under N₂ was added PCl₅ (57.5 mg, 0.27 mmol), and the mixture was stirred at rt for 1 h. The mixture was diluted with $CH_2Cl_2(50 \text{ mL})$ and washed with saturated aqueous NaHCO₃ (20 mL × 3). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by HPLC [LiChrosorb column, EtOAc/hexane (1:1)] to give 16 (36.8 mg, 68%): white solid; mp 109 °C dec; ¹H NMR (200 MHz, CDCl₃) δ 8.06–8.00 (m, 2H), 7.52–7.26 (m, 3H), 4.44 (t, J = 1.1Hz, 2H), 4.36 (t, J = 1.1 Hz, 2H); IR (KBr) 1306, 1102 cm⁻¹; MS (EI) m/z 235 (M⁺), 171 (100); HRMS calcd for C₁₁H₉NOS 235.0304, found 235.0309. The ¹H NMR spectra revealed the purity of product 16 to be better than 95%.

4,4,6,6-Tetramethyl-2-phenyl-4,6-dihydrothieno[3,4-d]oxazole 5,5-Dioxide (19). To a solution of sulfone 16 (38.2 mg, 0.16 mmol), HMPA (0.2 mL, 1.2 mmol), and MeI (0.1 mL, 1.6 mmol) in anhyd THF (5 mL) at -105 °C under N₂ was added LiHMDS [prepared from 1.3 M n-BuLi (0.6 mL) and 1,1,1,3,3,3hexamethyldisilazane (0.19 mL)] dropwise. After the mixture was stirred for 30 min at -55 °C, H₂O (2 mL) was added in one portion, and the resulting mixture was warmed to rt gradually. The mixture was concentrated under reduced pressure. The residue was eluted with EtOAc/hexane (1:1) through a silica gel column to remove HMPA and then purified by HPLC [Li-Chrosorb column, EtOAc/hexane (1:1)] to give 18 (24.7 mg, 52%): light orange oil; ¹H NMR (200 MHz, CDCl₃) δ 8.07-8.02 (m, 2H), 7.50-7.27 (m, 3H), 1.71 (m, 12H); IR (neat) 1306, 1094 cm⁻¹; MS (EI) m/z 298 (M⁺), 227 (100), 212, 131, 105, 77; HRMS calcd for C₁₅H₁₇NO₃S 291.0930, found 291.0931. The ¹H NMR spectra revealed the purity of product 19 to be better than 95%.

7,8a-Dihydro-2,6-diphenyl-cis-4H-oxazolo[4,5-f]isoindole-5,7(4aH,6H)-dione (14). A solution of sulfone 16 (8.5 mg, 0.036 mmol) and N-phenylmaleimide (12.5 mg, 0.072 mmol) in CHCl₃ (3 mL) was heated at 120 °C in a sealed tube under N₂ for 6 h. The solvent was evaporated under reduced pressure, and the residue was purified by HPLC (LiChrosorb column, EtOAc/hexane (1:1)) to give 14 (9.2 mg, 74%): white solid; mp 167–168 °C; ¹H NMR (200 MHz, CDCl₃) δ 8.02–7.96 (m, 2H), 7.51–7.34 (m, 6H), 7.30–7.25 (m, 2H), 3.64–3.16 (m, 6H); IR (KBr) 3070, 1679 cm⁻¹; MS (EI) m/z 344 (M⁺), 149, 121, 105 (100), 77. Anal. Calcd for C₂₁H₁₆N₂O₃: C, 73.24; H, 4.68; N, 8.13. Found: C, 72.94; H, 4.72; N, 7.83.

5,6-Bis(methoxycarbonyl)-trans-4,5,6,7-tetrahydrobenzo-[d]oxazole (15). A solution of sulfone 16 (12.2 mg, 0.05 mmol) and dimethyl fumarate (18.7 mg, 0.13 mmol) in CHCl₃ (3 mL) was heated at 120 °C in a sealed tube under N₂ for 6 h. The solvent was evaporated under reduced pressure, and the residue was purified by HPLC [LiChrosorb column, EtOAc/hexane (3: 1)] to give 15 (7 mg, 43%) and 21 (3.3 mg, 19%). Compound 15: white solid; mp 112–113 °C; ¹H NMR (200 MHz, CDCl₃) δ 8.01– 7.94 (m, 2H), 7.47–7.40 (m, 3H), 3.75 (s, 3H), 3.74 (s, 3H), 3.38– 2.81 (m, 6H); IR (KBr) 1724, 1168, 688 cm⁻¹; MS (EI) m/z 315 (M⁺, 100), 284, 256, 196; HRMS calcd for C₁₇H₁₇NO₅ 315.1107, found 315.1109. The ¹H NMR spectra revealed the purity of product 15 to be better than 95%.

5-Acetyl-4,5,6,7-tetrahydrobenzo[d]oxazole (20). A solution of sulfone 16 (12.2 mg, 0.05 mmol) and methyl vinyl ketone (0.01 mL, 0.12 mmol) in CHCl₃ (3 mL) was heated at 120 °C in a sealed tube under N₂ for 6 h. The solvent was evaporated under reduced pressure, and the residue was purified by HPLC [LiChrosorb column, EtOAc/hexane (1:1)] to give 20 [5.8 mg, 46% as a 1:9 mixture of unidentified regioisomers]. The minor isomer: white solid; mp 72-73 °C; ¹H NMR (200 MHz, CDCl₃) δ 8.01-7.97 (m, 2H), 7.45-7.41 (m, 3H), 2.95-2.70 (m, 5H), 2.27 (s, 3H), 2.28-2.21 (m, 1H), 2.07-1.82 (m, 1H); IR (KBr) 2922, 1683, 691, 602 cm⁻¹; MS (EI) m/z 241 (M⁺), 198 (100), 84; HRMS calcd for C₁₅H₁₅NO₂ 241.1104, found 241.1099. The ¹H NMR spectra revealed the purity of the product to be better than 95%. The major isomer: white solid; mp 36–37 °C; ¹H NMR (200 MHz, CDCl₃) § 8.02-7.97 (m, 2H), 7.47-7.41 (m, 3H), 3.05-2.83 (m, 3H), 2.73-2.67 (m, 2H), 2.29 (s, 3H), 2.29-2.24 (m, 1H), 2.00-1.70 (m, 1H); IR (KBr) 2939, 1693, 709, 691 cm⁻¹; MS (EI) m/z 241 (M⁺), 198, 84 (100); HRMS calcd for C₁₅H₁₅NO₂ 241.1104, found 241.1091. The ¹H NMR spectra revealed the purity of the product to be better than 95%

Dimerization of 2-Phenyl-4,6-dihydrothieno[3,4-d]oxazole 5,5-Dioxide (16). A solution of sulfone **16** (13.3 mg, 0.056 mmol) in CHCl₃ (4 mL) was heated at 120 °C in a sealed tube

Notes

under N₂ for 6 h. The solvent was evaporated under reduced pressure, and the residue was purified by HPLC [LiChrosorb column, EtOAc/hexane (1:1)] to give 21 (2.8 mg, 14%) and 22 (2.9 mg, 15%). Compound 21: white solid; mp 227-228 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.97-7.94 (m, 4H), 7.41-7.39 (m, 6H), 3.23 (s, 4H), 3.09 (s, 4H); IR (KBr) 2914, 709, 685 cm⁻¹; MS (EI) m/z 342 (M⁺), 172, 149 (100), 105 (100), 77; HRMS calcd for C_{22H18}N₂O₂ 342.1369, found 342.1356. The ¹H NMR spectra revealed the purity of product 21 to be better than 95%. Compound 22: colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.04-7.99 (m, 4H), 7.54-7.41 (m, 6H), 4.85 (d, J = 3.0 Hz, 1H), 3.12 (d, J = 18 Hz, 1H), 3.00-2.72 (m, 3H), 2.16-2.11 (m, 1H), 2.05-1.92 (m, 1H); IR (KBr) 1646, 1089, 1060

cm⁻¹; MS (EI) m/z 342 (M⁺), 149 (100), 103; HRMS calcd for $C_{22}H_{18}N_2O_2$ 342.1369, found 342.1364. The ¹H NMR spectra revealed the purity of product 22 to be better than 95%.

Acknowledgment. We thank the National Science Council of the Republic of China for financial support.

Supplementary Material Available: Copies of ¹H NMR spectra of 11d, 12a-c, 15, 16, and 19-22 (10 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.